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In  this paper we examine how the unsteady Aow field radiated from an oscillating 
body is altered from the result of acoustic theory as the direct consequence of dis- 
turbances propagating through the non-uniform flow produced by the presence of 
the body. Taking the specific example of an oscillating airfoil placed in supersonic 
flow and having the contour of a parabolic arc, we derive a closed-form representation 
for the unsteady flow field in terms of the confluent hypergeometric function. The 
analytical expression reveals explicitly that, though the body shape has a negligible 
effect in the near field, it  inextricably affects the unsteady flow a t  a large distance, 
both in its amplitude and phase, and substantially modifies the results of acoustic 
theory. In  addition, we display the relation of this solution to the ‘fundamental 
solution and the other salient physical features connected with disturbances propa- 
gating through non-uniform flow. The present results recover Whitham’s rule in the 
limit of zero frequency of oscillation and also include, as another special case, the 
unsteady solution for a wedge obtained by Carrier and Van Dyke. 

1. Introduction 
As is well known, acoustic theory in a moving medium is based on two major 

assumptions: that a disturbance propagates at  a uniform acoustic velocity and is 
swept downstream at a constant free-stream speed. Although this approximation is 
sufficiently accurate in the vicinity of the body, the acoustic theory for a supersonic 
flow is manifestly unfit for the description of the far field; it fails, for example, to 
reproduce the fanning out or coalescence of Mach waves. The reasons for the break- 
down have long been understood (e.g. Lighthill 1954): as a wavelet spreads out, two 
nonlinear effects ignored in the acoustic theory, i.e. the non-uniform acoustic and 
flow velocities, which vary with both position and time, emerge and exert an influence 
over a large distance. The nonlinear effects are locally small everywhere, including 
the far field. However, not only is the disturbance a t  a given point influenced by the 
slightly perturbed flow properties at  that location but it has been undergoing a con- 
tinual distortion while propagating through a non-uniform flow field. It is this cumu- 
lative distortion or ‘memory content of the signal which encroaches upon the result 
of acoustic theory and eventually alters it in the far field. 

For a steady flow, the task of surmounting the shortcomings of acoustic theory has 
drawn the attention of Friedrichs (1948), Lighthill (1949) and Whitham (1950, 1952), 
to mention only a few. These efforts culminated in the following celebrated rule due 

f Present address: University of Tennessee Space Institute, Tullahoma, Tennessee 37388. 
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to Whithamt (1952): to a good approximation, the result of acoustic theory can be 
amended if one replaces the linearized Mach wave by one revised using linearized 
velocities but, along this improved Mach wave, retains the values of the fluid proper- 
ties predicted by acoustic theory. Crudely speaking, then, the only visible consequence 
of the nonlinearity is the directional change in the Mach waves; the fluid velocities 
remain essentially unchanged. We reiterate here that the flow is steady in the frame 
of reference fixed to the body. 

In contrast to the above steady flow situation, relatively less attention appears to 
have been paid to problems where the flow is unsteady, again with respect to the 
co-ordinate system fixed to the body. To be sure, related studies have been published 
but they seem mostly to be restricted to a one-dimensional problem and its diverse 
variants (e.g. Lesser 1970; Romanova 1970; Nayfeh 1975). There have been very few 
attempts, if any, to obtain, in the spirit of the above steady problems, a complete and 
uniformly valid solution and then display the global behaviour of the unsteady flow 
field in either two- or three-dimensional space. Yet there are many important practical 
problems, like the unsteady aerodynamic interference between a multitude of oscil- 
lating bodies in a flow, e.g. flutter of cascaded airfoils, and other similar phenomena, 
where such an improved prediction of the unsteady flow valid even in the far field is 
critically needed. Prompted by this, we address here the problem of obtaining a first- 
order correction to the acoustic field radiated from an oscillating body, accounting for 
the interaction with the non-uniform flow created by the body itself. 

In  the case of unsteady flow, the nonlinearity will have additional consequences, 
as one can anticipate from the following physical reasoning. Let us first assume that 
only a single point on the body is oscillating sinusoidally. When one plots at  a given 
point in the flow the time trace of the disturbance emitted, the departure of the non- 
uniform acoustic and convective velocities from the uniform ones (from acoustic 
theory) will be graphically revealed, mainly, as a phase difference between the actual 
signal and the one predicted by the acoustic theory. The phase lag depends on the 
position and, the more one moves away from the source, the more the phase lag will 
increase, Suppose now that the whole body is oscillating. Then the above phase lag 
for an individual disturbance, which differs from one signal to another, and that alone 
(to say nothing of the modification in the amplitude of each signal) could introduce, 
when signals are vectorially added, a pronounced correction to both the amplitude and 
the phase of the unsteady flow in the far field. Thus the nonlinearity would cause, in 
addition to the alteration to be made to the direction of the characteristics, a change 
in the fluctuating pressure itself. The modification induced in the far-field signal has 
the following implication, which appears to warrant emphasis: contrary to the situ- 
ation in the near field, the unsteady signal a t  a large distance, even to first order in the 
small perturbation, can by no means be separated from such effects as the body shape, 
camber and angle of attack, which cause the properties of propagation to be non- 
uniform. The effect of thickness, for example, would be inextricably embedded in the 
far-field unsteady signal. 

Our present aim is to confnm these expectations and we shall do so by investigating 

t In early literature this was referred to as Whitham’s hypothesis. Now that it has become 
well established, it appears more appropriate to call it a rule instead. This rule should not, of 
course, be confused with another rule, due also to Whitham, relevant to the propagation of a 
shock through a region of varying cross-sectional area (e.g. Whitham 1974). 
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anstant , p = constant 

FIGURE 1. Definition sketch. 

the effects of a non-planar body, whose presence creates a non-uniform surrounding 
environment, upon the unsteady flow field. We shall expressly limit our investigations 
to the case of a two-dimensional slender body whose upper and lower surfaces consist 
of parabolic convex arcs and which is oscillating sinusoidally in a supersonic flow 
(figure 1).  Though, by confining our attention to this particular shape, we shall 
inevitably forfeit formal generality, the present approach will give a closed-form 
solution which is amenable to detailed study; from this we hope to glean the essential 
features of the flow non-uniformities. With regard to figure 1 again, the thickness of 
the body is characterized by a parameter E and the amplitude of oscillation by 8,. 
We shall examine the cumulative effects of the second-order terms, which ascend in 
the far field to a first-order unsteady term O(8,). There are three second-order terms, 
O ( E ~ , ) ,  O(@) and 0 ( e 2 ) ,  of which only the first two are relevant for the present un- 
steady problem. If one assumes E 8,, one can discard the term O(@), whose presence 
would cause undesirable higher harmonics. With this assumption, we are now in a 
position to focus attention on the remaining, O(6, E )  term, which represents the genuine 
coupling effect of present interest. It should be remembered, however, that, as pointed 
out by Hayes ( 1  954) for steady flow, only a few selected second-order terms contribute 
cumulatively to the first-order effects. Hence we shall pick out, by the use of the 
strained co-ordinate technique, those terms O(6, E )  whose cumulative effects amount 
to O(8,) in the far field. Thus our aim is clearly different from Van Dyke’s ( 1 9 5 3 ~ )  
second-order theory for an oscillating airfoil including the effect of thickness. There, 
because of his interest in the flow on the airfoil surface, combined with a situation 
involving only slow oscillations, he used a regular perturbation scheme in 8, and E 

and obtained a solution to O(8, E )  ; consequently, the hierarchical ascent of terms 
of second order to first order in the far field was neither expected to take place nor was 
his concern. On the contrary, our interest centres on just such an evolutionary, 
ascending process. 

In  the next section we shall begin with the governing equation and simplify it in 
Q 3 by employing the strained co-ordinate technique. In $ 4  4 and 5, we shall describe 
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the procedure for solving this simplified equation. We set out to obtain the corre- 
sponding Riemann function appropriate for a parabolic airfoil ; the Riemann function 
can be constructed explicitly and exactly in terms of the confluent hypergeometric 
function. With the Riemann function thus obtained, the solution, equation (5.4), 
follows from it without much difficulty. In  $6, before embarking on a physical 
interpretation of the solution, we pause and confirm that the present results can be 
reduced, through the limiting properties of the conff uent hypergeometric function, 
to some known results. In  the limit of zero frequency of oscillation, we shall recover 
Whitham's rule; for an oscillating wedge with small apex angle, the present result 
will embrace, as a special case, the solution obtained by Carrier (1949) and Van Dyke 
(19533). We shall resume the discussion of the curved airfoil in $7, where we observe 
that Tricomi's (1 949) expansion formula for the confluent hypergeometric function 
is ideally suited to t,he extraction of a physical interpretation; the gradual ascent of 
second-order terms to alter the acoustic signal in the far field will become effortlessly 
visible; and there the effect of body shape will be found to be tenaciously inseparable 
from the unsteady flow field. This will be followed in $8 by further description of 
salient physical features related to the disturbances propagating through the non- 
uniform medium. 

2. Problem formulation 

order, to which order the flow can still be regarded to be irrotational, by 
The governing equation for the perturbed velocity potential @ is given to second 

where the perturbed velocity components (u', v') are related to @ by 

a, = u', Oy = v', 

U, is the free-stream velocity, a, the speed of sound in the free stream, Mm = Uoo/am, 
rn = (.M% - l ) a  and y is the adiabatic exponent of the gas. We express, according to 
Van Dyke (1 953a), the co-ordinate of the moving upper surface as 

y = e f ( s )  - Boetutg(x),  (2.2) 
where e f ( x )  (e 4 1) designates the shape of the body in its mean position of oscillation 
and the second term represents its harmonic motion with frequency w .  The two small 
non-dimensional parameters c: and 0, characterize the slenderness of the body and the 
amplitude of motion, respectively. As long as the shock remains attached, we need 
consider only the flow above the upper surface. The boundary condition on the 
surface of the airfoil, as given by Van Dyke ( 1 9 5 3 ~ )  to second order, is 

= (U ,+@, , ) (~ f ' -BOeiwtg ' ) - iw6 ,e~"tg -  (ef--B0ei"tg)@.,, a t  y = 0. (2.3) 

Also, @ vanishes upstream of the bow shock, whose position moves in time. Since the 
flow variables are discontinuous a t  the shock and, strictly speaking, do not possess 
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FIGURE 2. Smoothing technique of Van Dyke. 

derivatives there, the governing equation is not formally satisfied. Hence in principle 
jump conditions across the shock, which is moving and whose temporal position is 
unknown a priori, must be imposed to ensure the conservation of mass, momentum 
and energy there ; this would introduce complications. However, this knotty problem 
can be completely circumvented by the smoothing technique, which was first devised 
by Courant & Friedrichs (1948, p. 365) for steady flow and later extended to the 
unsteady case by Van Dyke ( 1 9 5 3 ~ ) .  We fist imagine that an extension has been 
added to the leading edge of the actual airfoil: a sufficiently smooth and flexible tip 
of such a shape and moving in such a way as to prevent the formation of the shock 
in the flow above the upper surface (figure 2 ) .  We then regard the desired solution as 
the limit as the extension shrinks. Once this device has been employed, as here, the 
need to impose jump conditions a t  the shock can be eliminated for the solutions up to 
second order. (Also, whenever necessary, we shall hereafter regard the discontinuity 
in the flow variables at  the shock in the sense of the above limiting process.) The 
smoothing technique provides, in effect, a formal justification for the following point 
of view: the global behaviour of the unsteady flow downstream of the bow shock can, 
to a good approximation, be determined essentially independently of the presence of 
the shock and various complications arising from its motion (except in the close 
vicinity of the shock, where such a solution fails) ; the situation is akin to the familiar 
steady problem (Whitham 1952). 

Following Van Dyke a little further, we separate the perturbed velocity potential 
into a steady and time-dependent part by writing 

Q, = e$(x, y: e) + 0, exp [i(wt - kz)] @(x, y: e, O,), (2.4) 

where k = M2,w/m2Uao. The first term represents the steady base flow and @ in the 
second term corresponds to the unsteady flow ; our interest is focused on @. We sub- 
stitute (2.4) into (2.1) and (2.3) and assume e 9 @,, as stated in the introduction. We 
thus obtain the following two sets of equations: for $J 

[ - m29xx + 4g,1 = &2(M%/Uao) [m2(N - 1 )  4: + 9;Ix, ( 2 . 5 ~ )  

with the boundary condition 

and for @ 
&$Jy = &U,f' + c2(Qlxf '-fQ,,) a t  y = 0, ( 2 . 5 b )  

- m2 @zz + @,, - ( k m / W 2  $1 = 2(eeolum) {M2,[m2(N - 1 ) ex + 9,@,1z 
- ik [ (2N-  1)m"x~x+Nm2@$Jxx+ 9 X @ , l  -N(kmlMm)2$Jx@h ( 2 . 6 ~ )  

where N = $(y + i )M%/m2,  with the boundary condition 

@,@, = -O,[U,g'+ (ikU,m2/M2,)g]eikx 

+ e ~ o [ f ' ( @ x - ~ ~ ~ ) + ( - ~ x g ' + g $ J , , ) e i k z - f ~ , , ]  at y = 0. (2 .6b)  
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In  obtaining the above equation, some simplification on the right-hand side has been 
achieved by using the expressions for the left-hand side and neglecting terms of higher 
than the second order. It should be noticed that, although ( 2 . 5 ~ )  is nonlinear in #, 
equation (2.6a), the basis of this paper, is a lineart function of $ involving variable 
coefficients. Both 4 and $ vanish upstream of the bow shock. 

3. Application of strained co-ordinate technique 
The right-hand sides of ( 2 . 5 ~ )  and (2.6a)are of higher order than the left-hand sides. 

Consequently, if one uses a regular perturbation scheme, they successively yield the 
first- and second-order equations of Van Dyke with the right-hand sides either zero or 
expressible in terms of the first-order velocities, respectively; the first-order equation 
for $, in particular, is the (reduced) acoustic equation and it obviously precludes the 
ascent of the terms on the right-hand side to first order. In  order to achieve our stated 
objective of examining such an evolutionary process, we shall employ the strained 
co-ordinate technique instead: this is the point of departure of the present analysis. 
Although the original strained co-ordinate technique developed by Lighthill and 
Whitham involves only a single family of characteristics, the present unsteady prob- 
lem requires two families of characteristics for adequate description of the flow field. 
It is therefore convenient to use Lin's (1954) extension of the strained co-ordinate 
technique (see also Oswatitsch 1962) or the analytic method of characteristics, which 
enables one to treat the case of two families of characteristics. According to this 
method, the independent variables (2, y) as well as the dependent variables are to be 
expanded, with the characteristic parameters s and p regarded as new independent 
variables: 

( 3 . 1 ~ )  

(3.lb) 

( 3 . 2 ~ )  

eo$ = e , ~ ( i ) ( s , P ) + ~ ~ ~ ~ ( 2 ) ( S , p ) + e ~ ~ ( - ( 3 ) ( s , p ) +  ... , (3.2b) 

where s and p are constant along the corresponding characteristic curves, respectively. 
With respect to the characteristic curve, we first observe that, comparing ( 2 . 5 ~ )  
and (2.6a), all the coefficients of the second derivatives in the steady equation are 
the same as the corresponding ones in the unsteady part. This dictates, then, that 
the characteristic curves for both the steady and the unsteady equations are identi- 
cally the same and given by 

x = x(0) ( s ,p)+sx(1)(s,p)+ ... , 

y = y'o'(s,p)+€y"(S,p)+ ... , 
€q5 = €#'l'(s,I))+€2#(2)(s,p)+ ... , 

( 3 . 3 ~ )  

(3.3b) 

t Besides the usual shock emanating from the leading edge (and the one a t  the trailing edge, 
which does not matter for the flow field upstream of it), no additional shock is created owing to 
the motion of the airfoil; consequently, the entire unsteady flow can be uniformly described 
by the linearized equation. 
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Into these we substitute (3 .1  a, b )  and ( 3 . 2 ~ )  and equate the coefficients of equal powers 
of 6 .  We then determine successively, using the boundary condition (2 .5b ) ,  the terms 
in the series expansion; while the zeroth-order terms in ( 3 . 1 ) ,  x(0) and y(@, give the 
expression for the characteristic parameters corresponding to acoustic theory, the 
first-order terms, x(1) and y(l), give the desired nonlinear correction. We direct atten- 
tion towards the fact that the procedure is dependent wholly on the steady flow 
and excludes the unsteady part ( 3 . 2 b ) .  This process of co-ordinate stretching in 
steady flow being familiar, it suffices here to write down the following results: 

= - H ( s )  (Um/m)f (s), ( 3 . 4 )  

s = x-my-smyN(M2,/Um)d$(l)(s)/ds, ( 3 . 5 ~ )  

p = x + my - ( E / 2  U,) ( N  - 2 )  M%[p (s) - @(I) ( p ) ] ,  (3 .5  b )  

where H(s )  is a unit step function. The above expressions for s and p have been put 
in the present form by rewriting the results corresponding to (3 .1  a, b ) .  Geometrically, 
s represents, as shown in figure 1, the root of the straight Mach wave passing through 
a given point ( x ,  y) and along this s remains constant (Van Dyke 1975);  likewise, p re- 
presents the root of the cross Mach wave, along whichp remains constant. (As a matter 
of fact, the constants of integration in ( 3 . 3 ) ,  their choice being at  our disposal, are so 
adjusted that,at y = 0, x = s = p. )  Equation ( 3 . 4 )  indicates that thesteady, first-order 
velocity potentrial is dependent on s only and it obviously embodies Whitham’s rule. 

Having thus specified s and p ,  we then substitute the expansion for the unsteady 
part ( 3 . 2 b )  into (2 .6 ) .  In  obtaining the equation for the leading term $(l), we proceed 
with caution and retain the terms associated with k on the right-hand side because, 
for sufficiently high frequencies, they could become comparable with the terms on the 
left-hand side; the terms not associated with k can be neglected. One thus obtains 

where @’(I) designates the derivative of $(l) with respect to s; in differentiating $(l), we 
recall and envisage the smoothing process described in 0 2 and discard the term asso- 
ciated with the delta function. (When obtaining ( 3 . 6 a ) ,  the term (k/M,)2 in the braces 
initially appears as (k/M,)2[1-  ~ ( N / U , ) E $ ’ ( ~ ) ]  but the second term in the square 
brackets is neglected.) The boundary condition ( 2 . 6 b )  becomes 

BO{icklcf’(s)$(1) - m$P) + m$g) + V ( s )  ei”} = 0 a t  s = p ,  
where 

V ( X )  = Umg’(x) + ( ikUmm2/M2,)g(s) .  (3.6 b )  

Also, the upstream condition becomes 

$ ( I )  = 0 for s < 0. ( 3 . 6 ~ )  

It is convenient at this point to introduce the function F defined by 

$ ( I )  = exp[i(ek/U,) N ( p  - s) (s)] F .  (3 .7 )  
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Then ( 3 . 6 a )  becomes, to the order consistent with the present approximation, 

iek 
-2, 

8, [Fsp + - [ - ( 2 N  - 1)  $’(l)(s) + ( p  - ~ ) N $ ” ( l ) ( s ) ]  Pp 

+ [ (&-’ +gm N$”(1)(s)] P) = 0, ( 3 . 8 ~ )  

with the boundary conditions 

and 
F = 0 for s < 0. ( 3 . 8 ~ )  

In  ( 3 . 8 ~ )  b ) ,  the factor 8, is retained as a reminder that the equations are valid to order 
B,, the higher-order terms such as those O(e8,) in (3 .2b )  being neglected. Our aim is to 
obtain the explicit solution for P and we shall do so for an airfoil whose shape consists 
of parabolic arcs. 

4. Construction of the Riemann function 
If $‘( l ) (s)  were either zero or a constant, ( 3 . 8 ~ )  would be reduced to the telegraph 

equation. In  the present case of a parabolic-arc airfoil, f (x)  in ( 2 . 2 )  is quadratic in x 
and from (3 .4 )  the derivative $’(l) is linear in s. Thus ( 3 . 8 ~ )  is a second-order linear 
hyperbolic equation whose coefficients are variable (and linear in s). It is well known 
that the solution of any second-order linear hyperbolic equation can be expressed in 
the form of an integral representation, once the corresponding Riemann function has 
been obtained (e.g. Courant & Hilbert 1962, p. 449) .  If, in general, u satisfies 

Y[u] u,,+au,+bu,+cu = 0, 

where a, b and c are given functions of x and y, then u can be represented by an integral 
along the boundary (where Cauchy data are assumed to be prescribed) whose integrand 
involves the Riemann function R of the operator 9, R does not satisfy the operator 
equation 9 ( R )  = 0 but rather satisfies the adjoint operator equation 

9 * [ R ]  R,,-(aR),- (bR),+cR = 0. 

For our purpose, it  is convenient to derive first, instead of R, the Riemann function 
R* of the adjoint operator which satisfies the operator equation for pitself; then we 
obtain R through the symmetry property of the Riemann functions. For the present 
equation ( 3 . 8 ~ ) )  the Riemann function of the adjoint operator R*(E, 7; s , p )  satisfies 
the following three conditions (Courant & Hilbert, ibid.) : 

i 
(a) q,lr [R*l = RE, +v, 4- ( 2 N -  1 ) $ ’ W  + (7 - t )N$“( l ) ( t ) lR;  

+[(&) +-ek$’’(l)(S)]R* i N  = 0; ( 4 . 1 ~ )  
2u* 

( b )  along AC in figure 3, 

(4.1 b )  
1 aR* 
- - = O  on E = s ,  
!* an 
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FIQIJRE 3. Integration contour. 

and along BC, 

&[( 2N - 1 )  $'(l)([) - (7 - 5) N $"(l)([)] on 7 = p ; ( 4 . 1 ~ )  

( c )  R * ( s , p ; s , p )  = 1. (4.1d) 

Integrating (4.1 c) and determining the constant of integration from (4.1 d), we obtain 

where 

1 aR* i --=- 
R* a t  u, 

R*(k-,p;s,p) = explL*, (4.2) 

p* = (i/U,)sk{(N- l)[$'1)(t)-$(1)(~)]-"p($''1)(5) - $'(')(s)) 

- G$'(l)(t) -s$'(1)(4)l}. 
If we write 

where 
R * ( t , 7 ; s , p )  = exp(t l*)W),  (4.3) 

(4.4) 2 = - ( i /U,)N€k(t  - s) (7 - p )  $"(I), 

then for a parabolic-arc airfoil, for which 
following ordinary differential equation : 

is a constant, (4.la) is reduced to the 

where 
z M " + ( l  - x ) M ' - a M  = 0, 

a = 4 + U, k(4kNM2,$"(1))-l. 

(4.5) 
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This is known as Kummer’s equation and its only solution which satisfies (4.1 d )  is 
the following confluent hypergeometric function (e.g. Slater 1960, p. 2): 

M = H(a, 1,Z)) 
defined by 

az a ZB U,Zn 
M ( a , b , z ) =  1 + - + f +  ...+-+..., 

6 b ,2!  b,n! 
where 

and 

Hence (4.3) becomes 

Along 5 = s, R*(s, 7;  s ,p)  = 1 and this obviously satisfies the remaining requirement 
(4.1 b)  for the Riemann function. 

The Riemann function R(5, 7;  s ,p)  may be immediately derived from R* through 
the symmetry property of the Riemann function (Courant & Hilbert 1962, p. 454) by 
replacing g and 7 with s and p ,  respectively. Thus we obtain 

where 

an = a ( a + l ) ( a + 2 )  ...( a + n - l ) ,  for n = 1, 2 ,  ... , 

a, = 1. 

R*(t,7;s72.)) = exp(p*)Jf(a, 1 9 2 ) .  (4.7) 

R ( t , v ; s , p )  = exp(p)M(a, 1 , 4 ,  (4.8) 

/J = (i /U,)Ek((N- 1)[4(”(”’)(~)]-~[7(4’(’)(~)-4’(’)(g)) 
- W’( ’ ) (s )  -t4‘(’)(tNl), 

and 

5. An integral representation of the solution 
Once the Riemann function has been thus derived, one is in a position to employ 

Riemann’s formula (Courant & Hilbert, ibid.) to obtain the integral representation of 
F i n  (3.8 a), provided that Cauchy data are prescribed on the boundary. Unfortunately, 
the present boundary condition (3.8 b ) ,  which applies along the segment OA of figure 3 
(this corresponds to the x axis of figure l), is not Cauchy data. Rather, it expresses a 
linear relationship between the function F and its derivatives ; this induces some com- 
plication. If one applies Riemann’s formula to the contour around the shaded region of 
figure 3 (OACBO’), although the contributions from the line segments AC, CB, BO’and 
00‘ vanish identically, one ends up with an integral along OA ; since it turns out that 
the integral involves the value of F, which is unknown as yet, one has to solve a 
complicated integral equation to determine it. 

The difficulty is by no means unique to the parabolic airfoil, and in fact the same 
complication arises even in the more simplified situation of a flat-plate airfoil, where 
$’(’) is zero. In  such a case, ( 3 . 8 ~ )  is reduced to the telegraph equation and the corre- 
sponding Riemann function is a Bessel function (e.g. Courant & Hilbert, ibid.):  

R(t-9 9 ;  8, P) = Jl{(k/JfuJ us - 5) (2, - 7)131. (5 .1)  

To construct the flat-plate solution, Temple & Jahn (1945) used this and applied 
Riemann’s formula for a closed curve; the contour around the shaded region of figure 3 
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is none other than their path of integration. Their final result for F at a general point 
in the flow was left in a somewhat awkward form involving, inside the integral along 
the segment OA, the unknown values of F to be evaluated there, although the un- 
desirable term vanishes from the integral for a point on the surface of airfoil, i.e. on 
OA. It turns out, however, that one can advance a step further and eliminate the term 
entirely. More specifically, by substituting the expression derived for F on the surface 
of the airfoil into the integral representation for an arbitrary point and noting an 
identity involving a product of Bessel functions, F can be written exactly as the 
following integral of the Riemann function: 

W , p )  = HL)ji - ~ ( 7 ) e i k T ~ ( ~  = 7,7 = 7;s,p)d7 (5 .2a)  

k 
= *) IO5 7(7) eikT J (- [ (s - 7 )  ( p  - 7)]3) d7. 

m O Ma 
(5.2b)  

This expression is, of course, the well-known flat-plate solution obtainable by a 
number of other methods (e.g. Miles 1959, p. 50). 

Motivated by (5 .2a) ,  in the present case of a parabolic airfoil we try 

where R is now given by (4.8) and this can be directly verified to satisfy the governing 
equation ( 3 . 8 ~ ~ ) .  Also, substituting this into the boundary condition (3 .8b )  and re- 
calling that it is valid to O(eo) ,  it can be shown by using some of the results obtained 
by the present author (1974) that the boundary condition is indeed satisfied to the 
same order, the details being given in appendix A. From (5.3), F obviously vanishes 
for s < 0. Hence ( 3 . 8 ~ )  is satisfied and (5.3) is in fact the solution sought. Before we 
write down the final solution explicitly, we restore, in order to obtain +(I) in (3.7), the 
exponential factor, which may be written to the present order of approximation as 

I exp [ig N ( p - s ) $ ’ ( l ) ( s ) ]  N exp [iE sk NSmy$‘(l)(s)  . 

When we collect all the results obtained so far, we have the following: if the airfoil 
shape in the mean position is given by 

s f ( x )  = s(+ax2+/3x), 

where a < 0 (a convex surface), and the co-ordinate of the moving upper surface is 
given by 

y = e f ( x )  - Boeiwtg(x), 

where the amplitude of the motion g(x)  is an arbitrary function of x ,  then the leading 
term of the unsteady part of the velocity potential, in (3 .2b) ,  becomes 

@l)(s,p) = P(7) exp(ik7) exp 

sk 
x exp [i v, [ ( N  - 1) (#(l) (s) - $(l)(7)) + N(s  - 7) $’(l) (s)]} 
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where 
ikUmm2 

V(x )  = U,g’(z)+- g ( 4 ,  k = - - 9 

M2, u m  m 

@) (8) = ( - Um/m) ( +as2 + ps), 

x - my + M2, N$y E 
S =  , p = x + m y - -  (N-2)M2,[q5(1)(s)-q5(1)(p)]l 

1 - M2, Neay 2um 

I(E/m)(aS+p)l 4 1. 

This integral representation is the solution we have been seeking.t (The last inequality 
is a restriction due to the ttssumption of a small perturbation.) Before attempting to 
extract physical meanings, we pause in the next section to observe that the present 
solution embraces the various known results as special limiting cases. 

6. Limiting cases 
6.1. Steady limit 

In  the limit w -+ 0 or k -+ 0, from the limiting form M(a,  b,  0 )  = 1 of the confluent hyper- 
geometric function (e.g. Abramowitz & Stegun 1964, p. 108), (5.4) is immediately 
reduced to 

from (3.6b). This is Whitham’s rule for steady flow and becomes identical to (3.4) if 
we replace f by -9 .  We wish to emphasize that g is an arbitrary function and that 
we have recovered the above as the limit for zero frequency of oscillation. 

6.2. Oscillating $at-plate airfoil 

In  the limit B + O ,  when we note that (Abramowitz & Stegun 1964, p. 506) 

lim M(a,  1, -z /a)  = J0(224), 
a+ m 

(5.4) becomes at  once 

which is precisely the well-known flat-plate solution; the physical meaning of this 
integral representation was given by the present author (1974). 

t In  this connexion, it is of intereat to note that Goldatein & Rice (1973) found a solution 
for sound propagating through a uniform shear flow in terms of the parabolic cylinder function, 
which is intimately connected with the confluent hypergeometric function. 
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6.3. Oscillating wedge 

The third case which invites comparison with the present result is that of an oscillating 
wedge. In  the limit a -+ 0, with the aid of the limiting formula cited in $6.2 we obtain 

1 f’) = H$’/i - V ( T )  eikr exp ( - 2iNePky) exp c,i3k(2N - 1) (s - 7) 

x J (“ [ ( s - r ) ( p - - ) ] i  
O M m  

where s = x - my + M2, NePy, 

p = x+rny-(N-2)M2,@y 

and e/3 is the semi-vertex angle of the wedge. 
In  order to confirm the agreement of this formula with that obtained by previous 

workers, we f i s t  restore the factor e-ikx to (6.3). It is convenient to rotate the co- 
ordinate system from (x, y)  to (x,, y,), where x2 is parallel to the upper surface of the 
wedge and y2 normal to it. At the same time, we refer the flow properties to the mean 
steady flow behind the shock instead of those upstream of the shock and designate 
them by a subscript 2. Furthermore, we change the integration variable from T to 
7 = ~ ( 1  +m2t@). All this transforms the right-hand side of (6.3)) upon discarding 
negligible quantities, into the following expression : 

1 x,-myvr 
8oe-ikx$c1) N 8,- H(x ,  - m2y2) So 

m2 
V(7)  exp ( - ik2x2) exp (ik,q) 

This is identical to the flat-plate solution (6.2) if the latter is expressed in terms of the 
(x2,y2) co-ordinate system and the flow properties downstream of the shock. This 
result is not unexpected, since it is known that, if one takes the second-order equation 
for the unsteady component of the velocity potential to O(e8,) and expresses it in terms 
of these co-ordinate systems and flow variables, then for a wedge it exactly reduces 
to the acoustic equation. (The reason why the relationship (6.4) is approximate rather 
than exact is obviouslg due to the fact that, in the course of applying the strained 
co-ordinate technique, some non-essential second-order terms have been discarded.) 

Carrier (1949) obtained a solution for a wedge oscillating a t  its apex; the solution 
was derived in a more generalized way by including the rippling motion of the shock 
and, in addition to the irrotational component of the flow, rotational flow behind the 
shock. His solution was later generalized to include the case of a moving vertex by 
Van Dyke (1953b)) who also corrected typographical errors in Carrier’s paper. The 
solution was expressed in the form of a series involving Bessel functions. In order to 
facilitate direct comparison, we recast the present solution (6.4) in the following 
alternative form: 

( 6 . 5 ~ )  
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where 
tanh8 = m,y,fx,, 

b, = (i2M,v/k2m,)[tY+(-t)-’]+bcos (e/3)[ tY-(  -t)-’] ,  

t = i(N,+m,) 

and where V(x,) = U, + iw(x, - b cos E P ) ,  b being the pivotal position of the oscillating 
wedge measured from the apex. The above identity is given in appendix B. Now 
Carrier’s solution for the irrotational component of the flow becomes, in the present 
notation, 

(6 .5b )  

W 

8,a, z [a, cosh v8 + b, sinh ve] J ,  [x: - (m, y2)2]t] exp ( - ik2x2). (6 .6 )  
v = 1  

(The expression for b, given in (6 .5b )  is the corrected one given by Van Dyke 19533.) 
Carrier showed that as long as the shock is sufficiently weak 

a,, .i. - b , , t  

and in such a case (6 .6 )  is indeed identical to the right-hand side of ( 6 . 5 ~ ) .  This agree- 
ment naturally endorses the present viewpoint that the global behaviour of the 
unsteady flow downstream of the weak bow shock can be determined essentially 
independently of the presence and movement of the shock. 

7. Alternative representation of the solution and interpretation 
Returning now to the immediate subject of a parabolically curved airfoil, the 

solution as given in (5.4) is not appropriate for extracting its physical significance. 
Such an interpretation will, however, be obvious once we recast (5.4) in a more reveal- 
ing form by making use of the following Tricomi (1949) expansion formula for the 
confluent hypergeometric function in a series of Bessel functions : 

x 3% W 

M(a,  b ,x )  = r(b) (hX)&(l-b)exp (ix) 2 A ,  (a) Jn+b-l[2(h~)f] for Reb > 0, (7.1) 
n=O 

where h is the Whittaker parameter, given by h = &-a, and 

A,  = I ,  A,  = 0, A ,  = &, 
(n+2)An+, = (n+1)An-2hA,-,. 

When we insert this into (5.4), we obtain 

( 7 . 2 ~ )  

t Van Dyke (1953 b, also private communication) proved that for a small wedge angle 
aJb1 = - 1 + Sib00 E/b1+ O(E*) .  

As for the rotational component of the flow, the first term of its series representation may be 
shown to be o(e, €9). 
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where 
A ,  = 8, A,  = - $ A ,  A ,  = $, 

(n+  = nA,-l- 2AAn-,, A = mk(4iM2,Nea)-' ,  

( 7 . 2 b )  

(All three of the limiting cases of the preceding section are now directly derivable from 
the present form: for example, when k is set equal to zero, the result (6.1) follows a t  
once.) Equation (7 .2  a )  immediately surrenders itself to the following physical inter- 
pretation. Let us first examine the flow field near the leading edge, where both y and .Y 
are small. Then ( 7 . 2 ~ )  becomes, approximately, 

This is the flat-plate solution ( 6 . 2 ) ,  and in this region the effect of the body shape is 
indiscernible as yet; the unsteady flow field is completely separated from the non- 
uniform, steady flow. Physically the decoupling occurs because the unsteady dis- 
turbance, having travelled only a short distance from the leading edge, has suffered 
litt,le distortion. 

We now move away from the leading edge by increasing the value of y while keeping 
the value of s constant (along the straight Mach wave) or penetrate downstream by 
increasing the value of s while keeping y constant. I n  either case, if we look a t  the 
integrand of ( 7 . 2 ~ )  or the signal emitted a t  a point 7 on the airfoil, the complex 
exponential term, which can be written as 

immediately discloses the following key aspect: no matter how slender ( E  < 1 )  the 
airfoil may be, this phase shift (induced by the presence of the body) will eventually 
amount to an increasing delay at a large distance y or s. Moreover, it is also crucial 
to recognize here that the phase lag of the signal received a t  a position s depends not 
only on the local flow a t  that point, but also, through the very difference in the steady 
velocity potential, i.e. @)(s) - qW(7), upon the entire flow field which the signal has 
traversed; the disturbance 'remembers ' its past. Thus we might call this exponential 
factor the phase memory, a term commonly used in connexion with the propagation 
of a radio wave through a stratified ionosphere (e.g. Budden 1961).  As stated in the 
introduction, the existence of phase memory, which differs from one signal to another, 
is by itself quite sufficient to induce, upon superposition, a change in the amplitude 
of the unsteady flow field. The change is, however, further enhanced because the shape 
of the airfoil alters even the amplitude of the individual signal in the far field when the 
contributions from the higher-order terms of ( 7 . 2 ~ )  in the series of Bessel functions 
begin to surface. Thus, in the far field the airfoil shape, in its effect of causing non- 
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(b)  
FIQURES 4(a, b ) .  For legend see next page. 
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FIGURE 4. Amplitude and phase of unsteady pressure; -p'(p,  U: eiwt)--l = Re'6. The ordinate for 
the left figure of each pair is the ratio of the amplitude R for a parabolic-arc airfoil to that for a 
flat plate. The ordinate on the right is the difference in phase 9; M ,  = 1.3, y = 1.4, e = 0.1, 
a = - 1 ,  /3 = 0.5 (max j j / c  = 0.0125) and the pivot axis is at the leading edge. j j /c  = 
E[&(z /c )~+~(z / c ) ] .  (a) WC/U,= 0.1 (kc = 0.245): ----,Y/c = O(ky = O ) ; - - , Y / C  = 0.82(ky = 0.2); 
- - - -, Y/C = 2.04 (ky = 0.5). ( b )  O C / U ,  = 0.3 (kc = 0.735) : --, Y/C = 0 (ky = 0) ;--, Y/C = 0.82 
(ky = 0.6); ----, Y/C = 2*04(ky = 1.5). (c) WC/U, = 1 (kc = 2.45): - , Y/C = 0 (ky = 0): 
--, Y/C = 0.82 (ky = 2) ; - - --, Y/C = 2.04 (ky = 5 ) .  

uniform surrounding flow, is inextricable from the unsteady flow field and deeply 
affects both its phase and amplitude, as well as the directional change in the charac- 
teristic curves. 

This point is illustrated in figure 4, where the unsteady pressure distribution for a 
parabolic airfoil (max ij/c = 0.0125), computed from (7 .2) , t  is compared with the 
result for a flat-plate airfoil a t  three different frequencies of oscillation: wc/Um = 0.1 
in figure 4 (a) ,  wc/U,  = 0.3 in figure 4 ( b )  and wc/Uw = 1 in figure 4 (c). There, both the 
amplitude R and phase q5 are plotted as functions of s, i.e. the distance between the 
root of a straight Mach wave and the leading edge, and at  three different values of y. 
(If the flow were steady then, regardless of y, the amplitude would remain the same 
along the characteristics s = constant.) We observe that, though for wc/Uw = 0.1 the 
effect of the airfoil shape does not become prominent at  these values of y, it begins 

t For numerical computations, (7.2) is also more convenient than (5.4). 
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to emerge a t  wc/Um = 0.3; and for oc/Um = 1 ,  except for the close vicinity ofthe lead- 
ing edge, it indeed alters the pressure distribution substantially. 

The profound modification of the unsteady linear theory displayed here raises an 
obviously disquieting thought on the upshot of the acoustic theory when multi-body 
aerodynamic interference is involved and deepens concern expressed (Kurosaka 1975) 
with regard to some of the consequences arising from a pro forma sum of linearized 
unsteady upwashes. 

8. Further interpretation 
Pursuing the physical interpretation further, we seek the connexion between ( 7 . 2 ~ )  

and the 'fundamental' solution. We shall not, however, merely reconstruct ( 7 . 2 ~ )  by 
the superposition of the fundamental solution. Rather, we shall reverse the usual 
process and obtain the fundamental solution from ( 7 . 2 ~ ) :  that is to say, we regard 
(7.2) as the spectrum a t  frequency w or the Fourier transform and take its inverse 
transform so as to derive the transient response to an arbitrary time-dependent motion 
of the airfoil. The 'fundamental ' solution will arise naturally in the course of obtaining 
the transient response (Miles 1959, p. 53) .  Let us go back to (2 .4 )  and rewrite the 
unsteady part in a more general way as 

a) = sQt+B,SZ(x,y:t). 

Then the Fourier transform Q ( w )  of SZ (its leading part) is equal to e--ik2$(1), $(l) being 
given by ( 7 . 2 a ) ,  provided that V is regarded as the Fourier transform P of itself, i.e. 

where 

Taking the inverse transform 

eiWt dw, 

we obtain, by convolution, 

R(z,y,t) = A/" d 7 S m  V(7,  t -E)F(( )dS.  
m 0 - m  

Here 
EaQlaYl,=o = V ( x ,  4 

i m  

._ ~ 

where, for example, 

( 8 . 1 ~ )  

( 8 . l b )  

Po = r - l H ( b -  la[),  Fl = 0, F, = - ( 2 r ) - l H ( b -  lal)cos28, 

i F -  - 1 2NeaH,  a, mb 
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and where 

cos 8 = a/b, r = (b2 - a2)3. 

We note that SZ(s,y,t) contains, through F, in ( 8 . l b ) ,  the term l / r ,  which can be 
written as 

The meaning will become immediately recognizable if we note that a t  B = 0 the 
denominator of (8.2) may be reduced, after some algebra, to 

{(um[)2-(x-r- U,[)2-y2)k 

This represents, when set equal to zero, a circular wave front of a disturbance which 
was emitted a t  a source point (7, 0) and is propagating through uniform flow after a 
time (. Thus the denominator of (8.2), when put equal to zero, i.e. 

l2 1 
m2 - ( s - T ) ( ~ - T ) -  (x-T++c) = 0, (8.3) 

now describes the distorted wave front propagating in a non-uniform flow field. In  fact, 
we can directly show that the expression for obtained from (8.3) does satisfy, within 
the approximation consistent with the present analysis, the appropriate eikonal 
equation a t  large distances; (8.2) is indeed the fundamental solution. I n  general, for 
a given point (x, y) in flow and for a given source point ( T , O ) ,  there are two values of ( 
satisfying (8.3): one corresponds to  the time when the disturbance first arrives at 
(x, y) and the other to the time when it departs from (x, y). I n  the particular case when 
the point (2, y) is located such that either 

s = r  or p = ~ ,  

there is only one such moment for c, which implies that the wave front is tangential 
to either s = T or p = T .  s = T corresponds to the straight Mach wave, whose root is 
located a t  ( 7 , O )  ; p = T is the cross Mach wave passing through the same point. Hence, 
as expected, two families of Mach waves passing the source point form envelopes for 
the disturbance emitted from the source. I n  particular, the time required for the signal 
to arrive a t  a point on the straight Mach line s = r is given by 

It is of interest to  note that this can be obtained in the following, more physical way. 
The wave-front velocity c is in general the vectorial sum of the local acoustic speed 
in the direction of the normal n to the front and the convective fluid velocity, i.e. 
c = an+u. However, along the enveloping Mach waves, which are tangential to 
the wave front, the acoustic speed does not contribute to the component of the wave- 
front velocity in the direction parallel to the Mach wave ; only the fluid velocity con- 
tributes. I n  particular, along the straight Mach line the component of the fluid 
velocity or the wave-front velocity remains constant. If we divide the distance from 
the source (7, 0) to the point (x, y) by the component of the flow velocity in the 
direction of the straight Mach wave, we can directly derive (8.4), as the time elapsed. 

26 FLM 83 
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9. Concluding remarks 
It has been our aim to find a uniformly valid solution for the unsteady flow field and 

examine it, in detail. We have shown, through an explicit solution obtained for the 
specific case of a parabolic-arc airfoil oscillating in supersonic flow, that the prediction 
of the unsteady signal in the far field demands the detailed description of the contour 
of the moving boundary. The non-uniform surrounding flow produced by the very 
presence of the body, no matter how slender it may be, cumulatively and inextricably 
affects both the amplitude and the phase of the unsteady disturbance at a large 
distance from the leading edge. 

As a further related effort, it would appear to be worth while to pursue a study for 
other airfoil shapes so as to enlarge our stock of particular solutions. With regard to 
the question of similar cumulative, first-order effects of nonlinearity in subsonic flow, 
we still remain uncertain. It is intriguing, however, to note that in a very recent paper 
of Goldstein & Atassi (1976), where an exact second-order solution is obtained for an 
airfoil subject to a convected gust, the incoming gust, in its nonlinear interaction with 
the steady non-uniform flow field, is found to suffer distortion in wavelength in a 
manner akin to the present supersonic result though the flow treated there is 
incompressible. 
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to Dr S. D. Savkar for his many helpful suggestions and to Dr M. E. Goldstein, Dr 
L. J. Slater and Professor M. Van Dyke for answering his queries. He is especially 
indebted to Professor Van Dyke for generously making available details of his earlier 
notes. The work was supported by the Air Porce Office of Scientific Research under 
Contract No. F44620-74-C-0040. 

Appendix A 
I n  this appendix we shall show that the expression for F given by (5.3) does satisfy 

the boundary condition (3 .8b )  to order B0. We denote the left-hand side of ( 3 . 8 b )  by 

and we shall prove that along s = p this vanishes, to order 0,. Substituting (5.3) into 
the above, one obtains for s > 0 

where 
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We observe that along 5 = p 

V, = ( Z N - ~ ) ~ ’ ( ’ ) ( , ) - N ( T - S ) ~ ’ ~ ( ~ ) ,  = 0, M, = Mp. (A 3) 

Furthermore, by Tricomi’s expansion formula cited in 5 7,  the confluent hyper- 
geometric function M can be expressed as 

where 
A , =  1, A1=O, A , = *  

and the other, higher-order A ,  are the same as those given in (7.2b). The leading term 
of M is given by 

M - e x p  [ -- 2bm iskN(s - 7)2  $’‘(l) ] J, [& (s-7)]. (A 5 )  

From (A 3) and (A 5 ) ,  (A 2) becomes 

where 
V*(7)  = - V ( 7 ) i  u2N(7-s)$ff(1) .  

Equation ( A 6 )  can contribute to O(8,) only when sk is such that, if properly non- 
dimensionalized, O(sk)  = 1 or k = O(l/e). For such large values of k ,  we apply the 
following method of obtaining an asymptotic expansion (Kurosaka 1974)  : we first 
express J, in terms of an integral involving an exponential and use the stationary- 
phase method repeatedly. This yields 

and (A 6 )  becomes 
V) = O(O04, 

which is of higher order than O(0,);  the other terms of (A 4) may similarly be shown to 
be of higher order. Hence to O(O,), 1(F) = 0. 

Appendix B 
In this appendix we shall prove the identity ( 6 . 5 ~ ) :  

k m 

= -azOo v = 1  Z b,e-veJy (2 [ ~ ~ - ( ~ ~ z ~ 2 ) 2 ] ~ )  exp( - i k z x 2 ) ,  (B 1 )  

26-2 
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where 
iM2v 

x2 2 m2y2, tanh 6 = m2y2 -) b, = - [t”+ ( - t)”] + b cos (@) [t’- ( - t)-’], 
x2 k2m2 

t = i(M2 + m2), V(x2) = V, + i0(x2 - b cos q3). (B 2) 
First we write 

V(q)exp(ik,q) = 3 
7 a2 

As suggested by Carrier (1949)) we expand qexp(ik,q) and q2exp(ik2q) in series of 
Bessel functions, through the generating function of the Bessel functions, and obtain 

Substitution of this into the left-hand side of (B 1) yields 
m 

--a,& z b,vexP(-ik,X,)F(x,), 
, = I  

where 

If  we take the Laplace transform S o f  F(x2), defined by 

exp( -%)F(X2)dX,, 

then, by convolution, we obtain 

Inverting this gives (e.g. Erdblyi et al. 1954, p. 250) 

for x2 2 rn2 yz. By substituting (B 5) into (B 3) ,  one may establish the required identity 
(B 1).  
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